Hilbert’s tenth problem over rings of algebraic integers
Master Defence
Tim B. Herbstrith
28 February 2020
Hilbert’s tenth problem, Turing machines, and decidability
Hilbert’s tenth problem
Given a Diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers.
– Hilbert (1900)
Decision problems
Definition
A decision problem is a subset of the set of finite \mathtt 0-\mathtt 1-strings ω = \lbrace \mathtt{0, 1} \rbrace^* including the empty string \lambda.
An injective function \mathcal{Q} → ω, \; x ↦ \ulcorner x \urcorner is called an encoding.
Example: Simple graphs
The set of all simple graphs can be encoded by strings of the form
A Turing machine\mathbb{A} on the alphabetA = \lbrace\mathtt{\texttt{\S}, \_, 0, 1}\rbrace consists of
a finite set of statesS containing s_{start}, s_{halt} and
a transition function
δ: S \times A \to S \times A \times \lbrace -1, 0, 1 \rbrace.
A Turing machine adding 1 to a number in (reversed) binary encoding.
I write \mathbb{A}(x) for the output of Turing machine \mathbb{A} on input x ∈ ω if \mathbb{A} halts on x.
Computability, decidability, and semi-decidability
Definition
A partial function f: ω \to ω is computable if there is a Turing machine \mathbb{A} with \mathbb{A}(x) = f(x) for all x in the domain of f.
A decision problem Q is decidable if its characteristic function 𝟙{}_Q is computable.
A decision problem Q is semi-decidable or computably enumerable if there exists a Turing machine \mathbb{A} such that x ∈ Q \quad ⇔ \quad \mathbb{A}(x) = \mathtt 1.
The halting set
Definition
The halting set is the set of all codes of Turing machines \mathbb{A} that halt upon receiving their code as input i.e.
The halting set \mathcal{K} is semi-decidable but not decidable.
Some number theory
Algebraic integers
Definition
An element α \in ℂ is called algebraic integer if there exists a monic polynomial p \in ℤ[X] such that
p(α) = α^n + c_{n - 1} α^{n - 1} + … + c_0 = 0
We write \mathcal{O}_{} for the set of all algebraic integers …
… and if K is a number field, i.e. K is finite extension of ℚ, we set \mathcal{O}_{K}= \mathcal{O}_{} ∩ K.
For K = ℚ we find \mathcal{O}_{ℚ} = \mathcal{O}_{} ∩ ℚ = ℤ.
Properties of algebraic integers
Proposition
Both \mathcal{O}_{} and \mathcal{O}_{K} are sub-rings of ℂ (for all K).
\mathcal{O}_{K} is a finitely generated free ℤ-module (for all K). A basis is called integral basis.
The quotient field of \mathcal{O}_{K} is (isomorphic to) K.
Diophantine sets
At the core of Hilbert’s Problem
Diophantine Sets
Definition
Let R be a commutative ring with unit. A set S \subseteq R^n is called Diophantine if there exists a polynomial p \in R[{X}_1, \ldots, {X}_{n}, {Y}_1, \ldots, {Y}_{m}] such that
This fact is known as Lagrange’s foure square theorem.
Examples of Diophantine sets
Let K be a number field and \mathcal{O}_{K} its ring of algebraic integers. Then \mathcal{O}_{K}\setminus \left\lbrace 0 \right\rbrace is Diophantine over \mathcal{O}_{K}.
Proof
Using the Chinese remainder theorem one can prove that
Unions and conjunctions of Diophantine sets are Diophantine
Lemma
If S_1 and S_2 are Diophantine over \mathcal{O}_{K}, so are
S_1 ∪ S_2 \quad \text{and} \quad S_1 ∩ S_2.
The respective polynomial identities can be found effectively.
Hilbert’s tenth problem over algebraic integers
Fix a number field K. Hilbert’s tenth problem over \mathcal{O}_{K} can informally be stated as
H10: Does there exists an algorithm, deciding for every integer n > 0, every Diophantine set S ⊂ {\mathcal{O}_{K}}^n and every α ∈ {\mathcal{O}_{K}}^n, whether α ∈ S?
Which subsets of \mathcal{O}_{K} are Diophantine?
Model theory
Towards a modern formulation of Hilbert’s problem
Alternative view of Diophantine sets
Definition
Let R be a commutative ring with unit.
The language of rings with unity is \mathcal{L}_{ring} = \left\lbrace \mathtt{+, -, \cdot; 0, 1} \right\rbrace
The R-language is \mathcal{L}_{R} = \mathcal{L}_{ring} ∪ \left\lbrace \mathtt{c}_r \mid r ∈ R \right\rbrace.
holds for an atomic \mathcal{L}_{R}-formula ϕ. Here \mathfrak{R} denotes the \mathcal{L}_R-structure of R.
Decidability of theories
Definition
Let \mathcal{L} be a language.
An \mathcal{L}-theory is a set of \mathcal{L}-sentences.
An \mathcal{L}-theory \mathtt{Th} is (semi-)decidable if the set of encodings \left\lbrace \ulcorner ϕ \urcorner \mid ϕ ∈ \mathtt{Th} \right\rbrace ⊂ ω is (semi-)decidable.
Important theories for deciding Hilbert’s tenth problem
Let \mathfrak{R} be an \mathcal{L}_{ring}-structure with universe R.
Quantifiers
Operators
Language
purely Diophantine theory \mathtt{H10}^*(\mathfrak{R})
∃
none
\mathcal{L}_{ring}
primitive positive theory \mathtt{Th}_{∃+}(\mathfrak{R})
∃
∧
\mathcal{L}_{ring}
full theory \mathtt{Th}(\mathfrak{R})
∃, ∀
∧, ∨, ¬
\mathcal{L}_{ring}
Diophantine theory \mathtt{H10}(\mathfrak{R})
∃
none
\mathcal{L}_{R}
primitive positive diagram D_{∃+}(\mathfrak{R})
∃
∧
\mathcal{L}_{R}
complete diagram D^c(\mathfrak{R})
∃, ∀
∧, ∨, ¬
\mathcal{L}_{R}
atomic diagram D(\mathfrak{R})
none
¬
\mathcal{L}_{R}
Relationships of the theories
Hilbert’s tenth problem over algebraic integers
Fix a number field K. We restate Hilbert’s tenth problem over \mathcal{O}_{K} as
H10: Is the Diophantine theory \mathtt{H10}(\mathfrak{O}_K) decidable?
Hilbert’s tenth problem is semi-decidable
Remark
The atomic diagram D(\mathfrak{O}_K) is decidable, since \mathcal{O}_{K} is a finitely generated free ℤ-algebra.
Hence, for every polynomial p ∈ \mathcal{O}_{K}[{X}_1, \ldots, {X}_{n}], the relation \mathfrak{p}({α}_1, \ldots, {α}_{n}) \; :⇔ \; p({α}_1, \ldots, {α}_{n}) = 0 is computable.
We conclude that \mathtt{H10}^*(\mathfrak{O}_K) and \mathtt{H10}(\mathfrak{O}_K) are semi-decidable.
Note: We identify \mathcal{O}_{K} with \left\lbrace \ulcorner \mathtt{c}_α \urcorner \mid α ∈ \mathcal{O}_{K} \right\rbrace \subseteq ω.
many-one-reducibility and semi-decidable sets
Definition
A problem Q is many-one reducible to a second problem Q' if there exists a total computable function f ∶ ω → ω such that x ∈ Q \quad ⇔ \quad f(x) ∈ Q'.
One writes Q ≤_m Q'.
Proposition
Let Q, Q' \subseteq ω be problems such that Q ≤_m Q'. Then if Q' is semi-decidable, so is Q.
If Q is semi-decidable, then Q ≤_m \mathcal{K}.
Relationships of the theories w.r.t many-one reducibility
If we prove that \mathcal{K} ≤_m \mathtt{H10}^*(\mathfrak{O}_k), the diagram collapses
If we prove that \mathcal{K} ≤_m \mathtt{H10}^*(\mathfrak{O}_k), the diagram collapses
Hilbert’s tenth problem over ℤ
DPRM theorem (Matijasevič 1970)
A subset of ℕ is semi-decidable if and only if it is Diophantine over ℤ.
Corollary
\mathcal{K} \subseteq ℕ is Diophantine over ℤ. As a consequence \mathtt{H10}(\mathfrak{Z}) is undecidable.
Going up
Lemma
Let L / K be an extension of algebraic number fields. If \mathtt{H10}(\mathfrak{O}_K) is undecidable and \mathcal{O}_{K} is Diophantine over \mathcal{O}_{L}, then \mathtt{H10}(\mathfrak{O}_L) is undecidable.
Proof
Assume to the contray, that \mathtt{H10}(\mathfrak{O}_L) is decidable.
Let p_K ∈ \mathcal{O}_{L}[X, \mathbf{Y}] give a Diophantine definition of \mathcal{O}_{K} over \mathcal{O}_{L}.
If q ∈ \mathcal{O}_{K}{}[X_1, …, X_n], then q has roots in \mathcal{O}_{K} if and only if
We conclude that \mathtt{H10}(\mathfrak{O}_K) is decidable.
A Diophantine definition of rational integers is key
Corollary
If ℤ is Diophantine over \mathcal{O}_{K} then \mathtt{H10}(\mathfrak{O}_K) is undecidable.
Theorem
If ℤ is Diophantine over \mathcal{O}_{K}, then \mathcal{K} ≤_m \mathtt{H10}^*(\mathfrak{O}_K).
DPRM Theorem over \mathcal{O}_{K}(Davis et al. 1976)
Every semi-decidable subset of \mathcal{O}_{K} is Diophantine over \mathcal{O}_{K} if and only if ℤ is Diophantine over \mathcal{O}_{K}.
Hilbert’s tenth problem over totally real number fields and number fields with one pair of non-real embeddings
Two sequences solving Pell’s equation
Definition
Let K be a totally real number field or a number field with exactly one pair of non-real embeddings and at least one real embedding and a ∈ \mathcal{O}_{K}. We set
δ(a) := \sqrt{a^2 - 1} and
ε(a) := a + δ(a).
If δ(a) ∉ K, we define \mathrm x_m(a), \mathrm y_m(a) by
\mathrm x_m(a) + δ(a) \mathrm y_m(a) = ε(a)^m.
Lemma
(±\mathrm x_m(a), ±\mathrm y_m(a))_{m ∈ ℕ} are essentially all solutions to Pell’s equation i.e. if
α^2 - δ(a)^2 β^2 = 1 \quad \text{and} \quad x + δ(a) y = (α + δ(a)β)^ν,
then x = ±\mathrm x_m(a) and y = ±\mathrm y_m(a) for some m ∈ ℕ. Here ν = |μ(K)|.
Notation
Let K be number field of degree n = [K : ℚ] and let {σ}_1, \ldots, {σ}_{n} denote all embeddings of K into ℂ.
r_K denotes the number of real embeddings and s_K the number of pairs of pairs of non-real embeddings.
All embeddings σ_i with 2 s_K < i are assumed to be real and σ_1 := \mathop{\mathrm{id}}_K.
Main Lemma
Let K ≠ ℚ be a number field of degree n > 1, let a ∈ \mathcal{O}_{K} and r_K satisfy
\begin{cases}
r_K = n > 1\\
a > 2^{2(n + 1)}\\
0 < σ_i(a) < \frac{1}{2} &\text{for } 1 < i ≤ n
\end{cases}
\quad \text{or} \quad
\begin{cases}
r_K = n - 2 > 0\\
|σ_i(a)| > 2^{2(n + 1)} &\text{for } i ∈ \left\lbrace 1, 2 \right\rbrace\\
0 < σ_i(a) < \frac{1}{2} &\text{for } 2 < i ≤ n
\end{cases},
and let ν = |μ(K)|. Define S \subseteq \mathcal{O}_{K} by ξ ∈ S ⇔ ∃ x, y, w, z, u, v, s, t, x', y', w', z', u', v', s', t', b ∈ \mathcal{O}_{K}:
\begin{array}{lll}
\begin{cases}
x'^2 - (a^2 - 1) y'^2 = 1 \\
w'^2 - (a^2 - 1) z'^2 = 1 \\
u'^2 - (a^2 - 1) v'^2 = 1 \\
s'^2 - (b^2 - 1) t'^2 = 1
\end{cases}
&
\begin{cases}
x + δ(a) y = {(x' + δ(a) y')}^ν \\
u + δ(a) v = {(u' + δ(a) v')}^ν \\
s + δ(b) y = {(s' + δ(b) t')}^ν
\end{cases}
&
\begin{array}{lr}
0 < σ_i(b) < 2^{-18}, & s_K + 1 < i ≤ n \\
\begin{cases}
|σ_i(z)| ≥ C \\
|σ_i(u)| ≥ ½
\end{cases}, & s_K + 1 < i ≤ n\\
v ≠ 0, \quad z^2 \mid v & \\
\end{array} \\
w + δ(a) z = (w' + δ(a) {z')}^{νe}
&
b \equiv 1 \mod (z)
&
2^{n + 1} \prod_{i = 0}^{n - 1} (ξ + i)^n (x + i)^n \mid z
\\
s \equiv x \mod (u)
&
t \equiv ξ \mod (z)
&
b \equiv a \mod (u)
\end{array}
Then S is Diophantine over \mathcal{O}_{K} and νℕ \subseteq S \subseteq ℤ.
Idea of the proof
By the previous lemma, there exist integers k, h, m, j ∈ ℕ such that
Let K be a totally real number field or a number field with exactly one pair of non-real embeddings and at least one real embedding. Then ℤ is Diophantine over \mathcal{O}_{K}.
Proof
By the lemma ν ℕ ⊂ S ⊂ ℤ is Diophantine. Thus,
\begin{aligned}
α ∈ ℤ \; ⇔ \; ∃& β_1, β_2, β_3 ∈ \mathcal{O}_{K}:\\
& α = β_1 β_2 + β_3 ∧\\
& β_1 ∈ S ∧\\
& β_2 ∈ \left\lbrace -1, 1 \right\rbrace ∧ β_3 ∈ \left\lbrace 0, 1, …, ν - 1 \right\rbrace.
\end{aligned}
is a Diophantine representation of ℤ.
Davis, M., Matijasevič, Y., & Robinson, J. (1976). Hilbert’s tenth problem: Diophantine equations: Positive aspects of a negative solution. In Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Vol. XXVIII, Northern Illinois Univ., De Kalb, Ill., 1974) (pp. 323–378). Amer. Math. Soc., Providence, R. I.
Denef, J. (1980). Diophantine sets over algebraic integer rings. II. Trans. Amer. Math. Soc., 257(1), 227–236. https://doi.org/10.2307/1998133
Denef, J., & Lipshitz, L. (1978). Diophantine sets over some rings of algebraic integers. J. London Math. Soc. (2), 18(3), 385–391. https://doi.org/10.1112/jlms/s2-18.3.385
Hilbert, D. (1900). Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Kongreß zu Paris 1900. Nachrichten von der Königl. Gesellschaft der Wissenschaften zu Göttingen., 253–279.
Matijasevič, J. V. (1970). The Diophantineness of enumerable sets. Doklady Akademii Nauk SSSR, 191, 279–282.
Pheidas, T. (1988). Hilbert’s tenth problem for a class of rings of algebraic integers. Proc. Amer. Math. Soc., 104(2), 611–620. https://doi.org/10.2307/2047021
Reid, C., & Weyl, H. (1970). Hilbert. Springer Berlin Heidelberg.
Shlapentokh, A. (1989). Extension of Hilbert’s tenth problem to some algebraic number fields. Comm. Pure Appl. Math., 42(7), 939–962. https://doi.org/10.1002/cpa.3160420703