Hilbert’s tenth problem over rings of algebraic integers

Miscellaneous comments on subjects of the talk

Tim B. Herbstrith

28 February 2020

Remarks on the main lemma

Estimates for a

One uses strong approximation theorem to find an a ∈ \mathcal{O}_{K} satisfying the estimates

\begin{cases} r_K = n > 1\\ a > 2^{2(n + 1)}\\ 0 < σ_i(a) < \frac{1}{2} &\text{for } 1 < i ≤ n \end{cases} \quad \text{or} \quad \begin{cases} r_K = n - 2 > 0\\ |σ_i(a)| > 2^{2(n + 1)} &\text{for } i ∈ \left\lbrace 1, 2 \right\rbrace\\ 0 < σ_i(a) < \frac{1}{2} &\text{for } 2 < i ≤ n \end{cases},

of the main lemma.

Strong vertical method

Theorem (Denef and Lipshitz 1978)

Let L/K be an extension of number fields and n = [L : ℚ]. If x, y ∈ \mathcal{O}_{L}, y ≠ 0, and α ∈ \mathcal{O}_{K} satisfy \begin{aligned} & |σ_i(x)| < \frac{1}{2} |N_{L/ℚ}(y)|^{\frac{1}{n}} \text{ for all } 1 ≤ i ≤ n, \\ & |σ_i(α)| < \frac{1}{2} |N_{L/ℚ}(y)|^{\frac{1}{n}} \text{ for all } 1 ≤ i ≤ n, \text{ and}\\ & x \equiv α \mod (y) \text{ in } \mathcal{O}_{L}, \end{aligned} where {σ}_1, \ldots, {σ}_{n} denote the embeddings of L into the complex pane . Then x = α ∈ \mathcal{O}_{K}.

Approximations of real embeddings are Diophantine

Lemma (Denef 1980)

Let K be a number field and σ: K → ℝ be a real embedding. Then the relation σ(α) ≥ 0 is Diophantine over \mathcal{O}_{K}.

As a consequence, the relations of the main lemma \begin{array}{lr} 0 < σ_i(b) < 2^{-18}, & s_K + 1 < i ≤ n \\ \begin{cases} |σ_i(z)| ≥ C \\ |σ_i(u)| ≥ ½ \end{cases}, & s_K + 1 < i ≤ n\\ \end{array} are Diophantine.

Local fields

Absolute values

An absolute value on a field K is a function |\cdot| : K → ℝ, x ↦ |x| with the properties

  • |x| ≥ 0 for all x ∈ K and |x| = 0 if and only if x = 0;
  • |xy| = |x| |y| for all x, y ∈ K; and
  • |x + y| ≤ |x| + |y| for all x, y ∈ K.

If additionally the stronger condition

  • |x + y| ≤ \max(|x|, |y|)

holds for all x, y ∈ K then |\cdot| is called a .

Absolute values of a number field

Let K be a number field. Then K has the following absolute values

  • a trivial absolute value defined by |0|_1 := 0 and |x|_1 := 1 for all x ∈ K \setminus \left\lbrace 0 \right\rbrace;

  • one absolute value for each embedding σ: K → ℂ by setting |x| := |σ(a)|_ℂ, where |\cdot|_{ℂ} denotes the complex modulus; and

  • one for each non-zero prime ideal \mathfrak{p} defined by |x|_{\mathfrak{p}} := \left(\frac{1}{ℕ\mathfrak{p}}\right)^{\mathop{\mathrm{\mathrm{ord}}}_{\mathfrak{p}}(x\mathcal{O}_{K})}, where ℕ\mathfrak{p} := [\mathcal{O}_{K}: \mathfrak{p}].

Strong approximation theorem

Let K be a number field, let \mathcal{M}_K be the set of all the absolute values of K, let \mathcal{F}_K = \left\lbrace |\cdot|_1,… ,|\cdot|_ℓ \right\rbrace ⊂ \mathcal{M}_K be a non-empty finite subset, and let a_1,…,a_{ℓ - 1} ∈ K. Then for any ε > 0 there exists an x ∈ K such that the following conditions are satisfied.

  • For 1 ≤ i ≤ ℓ - 1 we have that |x − a_i|_i <ε.

  • For any absolute value |\cdot| not contained in \mathcal{F}_K we have that |x| ≤ 1.

More on Computability theory

Characterizations of semi-decidable sets

Proposition

Let Q \subseteq ω be a problem. The following are equivalent.

  • Q is semi-decidable.
  • Q is the range of a computable function.
  • There exists a computable binary relation R on ω^2 such that x ∈ Q \quad ⇔ \quad ∃ y ∈ ω: R(x, y)

What we know 1

Theorem (Gödel 1931; Rosser 1936)

The full theory \mathtt{Th}(\mathfrak{N}) of is undecidable.

Corollary

The full theory \mathtt{Th}(\mathfrak{Z}) of is undecidable.

Theorem (Robinson 1949, 1959)

The full first order theories \mathtt{Th}(\mathfrak{K}) and \mathtt{Th}(\mathfrak{O}_K) are undecidable for every number field K.

What we know 2

Theorem (Tarski 1931)

The full theories \mathtt{Th}(\mathfrak{C}) of and \mathtt{Th}(\mathfrak{R}) of are decidable. Thus, \mathtt{H10}^*(\mathfrak{C}) and \mathtt{H10}^*(\mathfrak{R}) are decidable.

Theorem (Rumely 1986; van den Dries 1988)

The theories \mathtt{H10}(\mathfrak{O}) and D^c(\mathfrak{O}) of the integral closure \mathcal{O}_{} of are decidable.

What we know 3

DPRM theorem (Matijasevič 1970)

A subset of is semi-decidable if and only if it is Diophantine over .

Corollary

\mathtt{H10}(\mathfrak{Z}) is undecidable.

What we know 4

Theorem

\mathtt{H10}(\mathfrak{O}_K) is undecidable if

  • K is totally real (Denef 1980),
  • K has exactly one pair of non-real embeddings and at least one real embedding (Pheidas 1988; Shlapentokh 1989),
  • if K is a quadratic extension of a totally real number field (Denef and Lipshitz 1978), or
  • if K is a subfield of a field with one of the properties above (Shapiro and Shlapentokh 1989).

What we would like to know

  • Is \mathtt{H10}(\mathfrak{O}_K) undecidable for all number fields K?
  • Especially: Is Hilbert’s tenth problem \mathtt{H10}(\mathfrak{Q}) over decidable?

References

Denef, J. (1980). Diophantine sets over algebraic integer rings. II. Trans. Amer. Math. Soc., 257(1), 227–236. https://doi.org/10.2307/1998133

Denef, J., & Lipshitz, L. (1978). Diophantine sets over some rings of algebraic integers. J. London Math. Soc. (2), 18(3), 385–391. https://doi.org/10.1112/jlms/s2-18.3.385

Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatsh. Math. Phys., 38(1), 173–198. https://doi.org/10.1007/BF01700692

Matijasevič, J. V. (1970). The Diophantineness of enumerable sets. Doklady Akademii Nauk SSSR, 191, 279–282.

Pheidas, T. (1988). Hilbert’s tenth problem for a class of rings of algebraic integers. Proc. Amer. Math. Soc., 104(2), 611–620. https://doi.org/10.2307/2047021

Robinson, J. (1949). Definability and decision problems in arithmetic. The Journal of Symbolic Logic, 14(2), 98–114. https://doi.org/10.2307/2266510

Robinson, J. (1959). The undecidability of algebraic rings and fields. Proc. Amer. Math. Soc., 10, 950–957. https://doi.org/10.2307/2033628

Rosser, B. (1936). Extensions of some theorems of gödel and church. Journal of Symbolic Logic, 1(3), 87–91. https://doi.org/10.2307/2269028

Rumely, R. S. (1986). Arithmetic over the ring of all algebraic integers. J. Reine Angew. Math., 368, 127–133. https://doi.org/10.1515/crll.1986.368.127

Shapiro, H. N., & Shlapentokh, A. (1989). Diophantine relationships between algebraic number fields. Comm. Pure Appl. Math., 42(8), 1113–1122. https://doi.org/10.1002/cpa.3160420805

Shlapentokh, A. (1989). Extension of Hilbert’s tenth problem to some algebraic number fields. Comm. Pure Appl. Math., 42(7), 939–962. https://doi.org/10.1002/cpa.3160420703

Tarski, A. (1931). Sur les ensembles définissables de nombres réels. Fundamenta Mathematicae, 17(1), 210–239. http://eudml.org/doc/212515

van den Dries, L. (1988). Elimination theory for the ring of algebraic integers. J. Reine Angew. Math., 388, 189–205. https://doi.org/10.1515/crll.1988.388.189