Miscellaneous comments on subjects of the talk
Tim B. Herbstrith
28 February 2020
One uses strong approximation theorem to find an a ∈ \mathcal{O}_{K} satisfying the estimates
\begin{cases} r_K = n > 1\\ a > 2^{2(n + 1)}\\ 0 < σ_i(a) < \frac{1}{2} &\text{for } 1 < i ≤ n \end{cases} \quad \text{or} \quad \begin{cases} r_K = n - 2 > 0\\ |σ_i(a)| > 2^{2(n + 1)} &\text{for } i ∈ \left\lbrace 1, 2 \right\rbrace\\ 0 < σ_i(a) < \frac{1}{2} &\text{for } 2 < i ≤ n \end{cases},
of the main lemma.
Let L/K be an extension of number fields and n = [L : ℚ]. If x, y ∈ \mathcal{O}_{L}, y ≠ 0, and α ∈ \mathcal{O}_{K} satisfy \begin{aligned} & |σ_i(x)| < \frac{1}{2} |N_{L/ℚ}(y)|^{\frac{1}{n}} \text{ for all } 1 ≤ i ≤ n, \\ & |σ_i(α)| < \frac{1}{2} |N_{L/ℚ}(y)|^{\frac{1}{n}} \text{ for all } 1 ≤ i ≤ n, \text{ and}\\ & x \equiv α \mod (y) \text{ in } \mathcal{O}_{L}, \end{aligned} where {σ}_1, \ldots, {σ}_{n} denote the embeddings of L into the complex pane ℂ. Then x = α ∈ \mathcal{O}_{K}.
Let K be a number field and σ: K → ℝ be a real embedding. Then the relation σ(α) ≥ 0 is Diophantine over \mathcal{O}_{K}.
As a consequence, the relations of the main lemma \begin{array}{lr} 0 < σ_i(b) < 2^{-18}, & s_K + 1 < i ≤ n \\ \begin{cases} |σ_i(z)| ≥ C \\ |σ_i(u)| ≥ ½ \end{cases}, & s_K + 1 < i ≤ n\\ \end{array} are Diophantine.
An absolute value on a field K is a function |\cdot| : K → ℝ, x ↦ |x| with the properties
If additionally the stronger condition
holds for all x, y ∈ K then |\cdot| is called a .
Let K be a number field. Then K has the following absolute values
a trivial absolute value defined by |0|_1 := 0 and |x|_1 := 1 for all x ∈ K \setminus \left\lbrace 0 \right\rbrace;
one absolute value for each embedding σ: K → ℂ by setting |x| := |σ(a)|_ℂ, where |\cdot|_{ℂ} denotes the complex modulus; and
one for each non-zero prime ideal \mathfrak{p} defined by |x|_{\mathfrak{p}} := \left(\frac{1}{ℕ\mathfrak{p}}\right)^{\mathop{\mathrm{\mathrm{ord}}}_{\mathfrak{p}}(x\mathcal{O}_{K})}, where ℕ\mathfrak{p} := [\mathcal{O}_{K}: \mathfrak{p}].
Let K be a number field, let \mathcal{M}_K be the set of all the absolute values of K, let \mathcal{F}_K = \left\lbrace |\cdot|_1,… ,|\cdot|_ℓ \right\rbrace ⊂ \mathcal{M}_K be a non-empty finite subset, and let a_1,…,a_{ℓ - 1} ∈ K. Then for any ε > 0 there exists an x ∈ K such that the following conditions are satisfied.
For 1 ≤ i ≤ ℓ - 1 we have that |x − a_i|_i <ε.
For any absolute value |\cdot| not contained in \mathcal{F}_K we have that |x| ≤ 1.
Let Q \subseteq ω be a problem. The following are equivalent.
The full theory \mathtt{Th}(\mathfrak{N}) of ℕ is undecidable.
The full theory \mathtt{Th}(\mathfrak{Z}) of ℤ is undecidable.
The full first order theories \mathtt{Th}(\mathfrak{K}) and \mathtt{Th}(\mathfrak{O}_K) are undecidable for every number field K.
The full theories \mathtt{Th}(\mathfrak{C}) of ℂ and \mathtt{Th}(\mathfrak{R}) of ℝ are decidable. Thus, \mathtt{H10}^*(\mathfrak{C}) and \mathtt{H10}^*(\mathfrak{R}) are decidable.
The theories \mathtt{H10}(\mathfrak{O}) and D^c(\mathfrak{O}) of the integral closure \mathcal{O}_{} of ℤ are decidable.
A subset of ℤ is semi-decidable if and only if it is Diophantine over ℤ.
\mathtt{H10}(\mathfrak{Z}) is undecidable.
\mathtt{H10}(\mathfrak{O}_K) is undecidable if
Denef, J. (1980). Diophantine sets over algebraic integer rings. II. Trans. Amer. Math. Soc., 257(1), 227–236. https://doi.org/10.2307/1998133
Denef, J., & Lipshitz, L. (1978). Diophantine sets over some rings of algebraic integers. J. London Math. Soc. (2), 18(3), 385–391. https://doi.org/10.1112/jlms/s2-18.3.385
Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatsh. Math. Phys., 38(1), 173–198. https://doi.org/10.1007/BF01700692
Matijasevič, J. V. (1970). The Diophantineness of enumerable sets. Doklady Akademii Nauk SSSR, 191, 279–282.
Pheidas, T. (1988). Hilbert’s tenth problem for a class of rings of algebraic integers. Proc. Amer. Math. Soc., 104(2), 611–620. https://doi.org/10.2307/2047021
Robinson, J. (1949). Definability and decision problems in arithmetic. The Journal of Symbolic Logic, 14(2), 98–114. https://doi.org/10.2307/2266510
Robinson, J. (1959). The undecidability of algebraic rings and fields. Proc. Amer. Math. Soc., 10, 950–957. https://doi.org/10.2307/2033628
Rosser, B. (1936). Extensions of some theorems of gödel and church. Journal of Symbolic Logic, 1(3), 87–91. https://doi.org/10.2307/2269028
Rumely, R. S. (1986). Arithmetic over the ring of all algebraic integers. J. Reine Angew. Math., 368, 127–133. https://doi.org/10.1515/crll.1986.368.127
Shapiro, H. N., & Shlapentokh, A. (1989). Diophantine relationships between algebraic number fields. Comm. Pure Appl. Math., 42(8), 1113–1122. https://doi.org/10.1002/cpa.3160420805
Shlapentokh, A. (1989). Extension of Hilbert’s tenth problem to some algebraic number fields. Comm. Pure Appl. Math., 42(7), 939–962. https://doi.org/10.1002/cpa.3160420703
Tarski, A. (1931). Sur les ensembles définissables de nombres réels. Fundamenta Mathematicae, 17(1), 210–239. http://eudml.org/doc/212515
van den Dries, L. (1988). Elimination theory for the ring of algebraic integers. J. Reine Angew. Math., 388, 189–205. https://doi.org/10.1515/crll.1988.388.189